







## **Evaluating a Propensity Score Adjustment for Combining Probability and Non-Probability** Samples in a National Survey

FedCASIC 2016 May 3, 2016

**Heather Driscoll, MS** Randal ZuWallack, MS Kurt R. Peters, PhD Pedro Saavedra, PhD































#### **Outline**

- 2012 Canadian Nature Survey
  - Research questions
  - Survey design
- Weighting Methodology
- Results (Comparison of weighted estimates)
- Conclusions

## **Research Questions**

National population survey of Canadian adults







- Complex sample design with hybrid probability and non-probability samples
- Multi-mode administration (Paper + Web)
- For probability sample (nationally):
  - 76,363 addresses sampled from ABS frame
  - 15,207 completes
  - 20% response rate (lower bound)
- For non-probability samples (nationally):
  - 8,897 completes





#### Address-Based Sample of Canadian Adults

- Drawn from Canada Post address file
- Stratification:
  - Province/Territory (all except Nunavut)
  - Urban/Rural address (Canada Post frame variable)
- Mode of Administration:
  - Paper, with Web option
- Within-HH selection by Last Birthday Method
- Targeted 1,000 completes in each province and territory



#### Web Panel Sample

- Canadian adults recruited via social media and websites
- Recruited to match key demographic distributions (race, age, education, income)
- In each P/T, fielded until target number of completes was reached



 Focus of current research is evaluation of weighting to combine the probability (ABS) and non-probability (Web panel) datasets for analysis





#### An ABS analytic weight was developed for ABS respondents

- Standard probability-based selection weight adjusted for non-response and poststratified to Census totals:
  - Province x Age x Sex
  - Province x Urban/Rural
  - Aboriginal/Non-Aboriginal



- The following approach was explored for combining the ABS and Panel respondents into a single weighted dataset:
  - 1. Estimate probability of observation in Panel (vs. Population)
  - Score all (Panel and ABS) cases to assign a probability of observation under Panel design
  - 3. Assign probability of observation under ABS design to Panel cases
  - 4. Combine ABS and Panel observation probabilities to compute combined weight

- Estimate probability of observation in Panel (vs. Population) using weighted logistic regression
  - Outcome = Observation in Panel (vs. Population)
    - P(Observation) = P(Selection) \* P(Response)
  - Weights:
    - For ABS cases, weight = ABS analytic weight (post-stratified to population)
    - For Panel cases, weight = 1



- Estimate probability of observation in Panel (vs. Population) using weighted logistic regression
  - Predictors:



#### Score all (Panel and ABS) cases to assign a probability of observation in Panel

• Mean estimated probability of observation under Panel design:



#### Assign probability of observation under ABS design to Panel cases

- Probability of observation under ABS design computed as inverse of post-stratified ABS analytic weight
- Within post-stratification classes, same ABS probability was assigned to Panel respondents
  - This assumes that ABS and Panel cases within these classes have the same probability of observation under ABS design
- Result is that all cases in combined sample have a (true or estimated) probability of observation under both the ABS and Panel designs

# P(Observation) ABS Panel Sample ABS Inverse of post-stratified, NR- Matched by post-stratification adjusted ABS sampling weight class Panel Estimated Panel probability Estimated Panel probability

#### Combine ABS and Panel probabilities to compute combined weight

- $-p(ABS \cup Panel) = p(ABS) + p(Panel) p(ABS) * p(Panel)$
- $w_{combined} = 1/p(ABS \cup Panel)$

## **Results**

## Demographics



#### **Results**

■ Panel (Unweighted) ■ Panel (Combined Weight) ■ Combined (Combined Weight) □ ABS (ABS Weight)

#### Key Survey Outcomes

MAD of Panel from ABS population estimates is 10% lower after weighting, and ~40% lower with combined weighted sample



#### **Conclusions**

#### Unweighted panel data differed from benchmarks

- Demographics: More female, younger, lower income, less educated, more urban
- Outcomes:
  - Accurate (±2 points):
    - Nature-related profession
    - Aware of the concept of species at risk
    - Experienced a threat from wild animals
    - Experienced damage to personal property caused by wild animals
  - Overestimates (>2 points over):
    - Chose where to live in part to have access to nature
    - Participated in fishing
  - Underestimates (>2 points under):
    - Chose to spend more time outdoors in the last year to experience nature
    - Aware of the concept of biodiversity
    - Aware of the concept of ecosystem services
    - Participated in some form of nature-based recreation
    - Spent >\$40 in donations and membership dues to nature organizations

#### **Conclusions**

- Propensity score model was used to estimate probability of being observed in the panel compared to general population
  - Model explained only some of the variance  $(R^2 = .19)$  room for improvement
  - Nevertheless, estimated probability of observation
    - Brought panel demographics in line with population
    - Reduced bias in panel estimates for key survey outcomes
    - Made possible the combination of probability (ABS) and non-probability (Panel) data into a single, weighted dataset

#### **Conclusions**

#### Next steps...

- Building a more comprehensive model of P(Observation) under panel design
- Does reduction in bias via panel weight come at the price of increased variance? How accurate are estimates of sampling error from modeled probabilities of selection?



# **Thank You!**

